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The inadequacy of existing criteria for. finding eguilibrium
phase compositions in complex systems by free-energy minimization
is demonstrated. A criterion is proposed that is applicable to
physiochemical systems of any complexity. The criterion in the gen-
eral case amounts to solving an auxiliary problem, where any free-
energy minimization algorithm can be used, |

At present, investigation of equilibria in chemical systems by computa-~
tion is being increasingly used in geochemistry and adjacent areas. However,
the potential of physicochemical simulation provided by computing is far from
completely utilized. Calculations on equilibria have been restricted to a
comparatively narrow range of topics, due to the use of equilibrium criteria
applicable only to relatively simple chemical systems. The present paper
deals with an equilibrium criterion for a system of any complexity, which can
include any number of phases of constant or variable compositions, including
solid, liquid, and gaseous solutions of any numbers of the components.*%

The Gibbs phase rule restricts the maximum number of phases coexisting in
equilibrium, However, as a rule it is not known in advance what phases form
the equilibrium association, and therefore one usually incorporates all possi-
ble phases into the thermodynamic model for the chemical system (subsequently
just called system), the number of these considerably exceeding the number
defined by the phase rule. The problem in calculating the eguilibrium composi-
tion therefore consists primarily in selecting the phase association (phase
composition of the system) that gives equilibrium, and only then are the equi-
librium compositions of these phases found. The solution to the second prob-
lem (that of calculating equilibrium in a system of given phase composition)
is comparatively simple, and numerous algorithms and computer programs have
been written for the purpose. However, no criterion has so far been defined
that enables one to find the equilibrium phase association in the general case.

- *Trans. from Geokhimiya, No. 7, pp. 981-988, 1981.

*#*Following [1], by components we understand qualitatively distinct parts of a single
phase that are capable, at least in principle, of varying quantitatively independently one of
another. TFor example, ions and neutral complexes are components of an aqueous solution,
while any phase of constant composition contains only one component. Particular note should
be made that the name independent components is given to stoichiometric units used to express
the compositions of the dependent components.
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In practice, varilous particular criteria are used for this purpose, which
enable one to select a stable association only amongst phases of constant com-
position and in certain cases of ideal solutions.

The general scheme for identifying the equilibrium phase association is
as follows. First one calculates the equilibrium for a given phase composi-
rion. Then one uses some suitable criterion to determine whether this solu-
+ion is an equilibrium one for the system as a whole. If this is not so, the
criterion should indicate what new phase association should be selected to
bring the system closer to equilibrium. After suitable change in the phase
composition, the calculation is repeated. The process terminates when the
criterion indicates that the current phase composition provides equilibrium in
the entire system,

For the 1isobaric~isothermal systems envisaged here, the equilibrium state
corresponds to minimum free energy (Gibbs energy (). This is the most general
principle and is applicable to all systems at constant temperature and pres-
sure, but it is not, strictly speaking, suitable for practical calculations.

A direct check on the minimimality of the free energy at a given point requires
comparing this with the values of G for all other possible system compositions,
which obviously is impossible. However, from the general concept of minimum
free energy we can derive consequences that can be used to check the equilib-
rium state of a given composition. Of these, two are most used: the law of
mass action and the Kuhn-Tacker condition. |

The law of mass action is based on stoichiometric reaction equations;
specification of such an equation for the computing system means that the cor-
responding reaction comes to equilibrium when the concentrations of the compo-
nents of the phases involved in the reaction attain the values that satisfy
the equation. The free-energy concept is not used explicitly in calculations
of equilibria by means of the law of mass action, but minimization of ¢ is
understood inexplicitly, since the derivation of the eguations is based on the
reguirement of a minimum in the total free-energy of the initial substances
and reaction prodicts. The law of mass actlon is a consequence of the condi-~
tion of a minimum in the isobaric-isothermal potential, which can be used in
computations on eguilibrium conditions, but the law is only a particular case
of the general criterion of min G. An investigator who uses this equation must
know in advance the reaction for which he writes the law of mass action and
which will occur in the equilibrium. This condition is always obevyed for
example for an ideal gas mixture. However, such equations cannot be written
for reactions that go to completion, such as between phases of constant compo-
sition. The most complex problem that can be solved by this method is to cal-
culate the equilibrium in a heterogeneous system consisting of a solution and
several phases of constant composition related to the solution by solubility
products.,

The second criterion is the Kuhn—-Tacker condition, and this occurs be-

cause of explicit formulation of the equilibrium calculatoin as minimization

of G. The theory of mathematical programming is a division of computational
mathematics that deals in part with the derivation of turning points in func~
tions, and it gives us a criterion for checking the optimality of thé composi-
tion, and also a set of methods of finding the optimum point. The Kuhn-Tacker
theorem in one formulation asserts that a given point (system composition) 1is
optimal (eguilibrium) if the gradient in the target function ¢ can be expressed
as a definite linear combination of normals to the constraint surfaces (see [2]

for all details on the Kuhn-Tacker conditions). The constraints in the present
case are the equations {mass-balance equations) and inequalities {(the condi-
tions for the molar amounts of the components to be nonnegative, n>=0). A very
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important point is that the Kuhn-Tacker condition contains the chemical poten-
tials of all components of the system no matter whether their amounts are non-
zero Oor not. This enables one to use the approach 1n systems where reactions

may go to completion. For example, the equilibrium composition can be deter-

mined for a system consisting only of solid phases that do not form solutions

by minimizing ¢ using the Kuhn-Tacker conditions as the equilibrium criterion

(this is a problem in linear programming).

The Kuhn~Tacker conditions ilnclude the law of mass actlion as a particular
case and therefore constitute a more general criterion. However, the eguilib-
rium phase composition may be known in advance, in which case the two approach-
es are in principle equivalent. 1In that case, the use of the law of mass
action even has a certain advantage, since in general the equilibrium constants
for reactions can be derived more readily than the free energies for all compo-
nents of the system.

The apparent universality of the RKuhn-Tacker conditions as criteria for
equilibrium in a system is not however any basis for mechanical extension of
the application to more complicated cases. There are copstraints on the appli-
cability of these conditions from a feature that plays a positive part in the
above examples, namely the need to know the chemical potentials of components
whose molar amounts in the current composition are zero. The question of the
chemical potentials of these absent components reqguires more detailed
discussion.

When a component of the system 1is a phase of constant composition, the
chemical potential of this is constant, i.e., it does not vary when the molar
amount of the component alters. The phase vanishes when the amount becomes
zero, but the chemical potential remains the same up to the point where this
phase vanishes. Conversely, if a phase of constant composition previously ab-
sent is formed again, the chemical potential is at once equal to the previous
value. This feature enables one to use the Kuhn-Tacker conditions to specify
the chemical potential of a phase of constant composition even when it is ab-
sent from the system. In other words, the vector for the gradient in ¢ may be
continuously defined up to the boundary of the region of definition correspond-
ing to the condition n=0, where n is the molar amount of the phase in the

- system.

In general, the Kuhn-Tacker conditions are applicable to each internal
point in the set of permissible compositions, and also at those boundary points
of this set at which the gradient in ¢ can be continuously determined. How-
ever, this 1s not possible for all boundary points. A special point is consti-
ted by a nodal point in the region of permissible compositions corresponding to
the absence of a phase of wvariable composition for which the chemical poten-
tials of the components are dependent on the phase composition.

As an example let us consider an 1deal solution of a certain composition.
The chemical potentials of the components in the solution are

=+ RT In x;,

where “3 1s the chemical potential of the pure component under the given condi-
tions and x.: is the molar fraction of component J in the solution. Let the
amount of solution diminish in such a way that the molar fractions of the com-
ponents are unaltered. The vector for the chemical potentials of the compo-
nents will clearly remain constant until the solution has completely vanished,

and its limit will be equal to the initial vector. If we now alter the
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relation between the amounts of the components in the initial solution and
repeat the process, we get another limiting value for the chemical-potential
vector. Therefore, the limit to the gradient of G as the amount of solution
tends to zero will have infinitely many values dependent on the path by which
the point was approached. This means that at this point the gradient in G
cannot be determined in such a way as to be continuous.

The above argument has the following physical meaning. When a phase of
constant composition is absent from the system, an infinitely small trial
amount of this phase may be formed, whereupon one considers how the free
energy of the system is altered. If AG<0, the occurrence of the phase reduces
the free energy, and the phase should be formed; if AG>0, the new phase is un-
stable under these conditions (this is the meaning of the XKuhn-Tacker condi-
tions that relate to absent phases). If on the other hand the solution phase
is absent from the system, one cannot perform such a. check, since the effect
from formation of the "trial" solution may be substantially dependent on the
composition of that solution. In that case the Kuhn-Tacker conditions are not
applicable, and the state of equilibrium for the given composition must be de-
termined from other and more general consequences by the condition for minimal

potential.

| Although it is explicitly assumed in the Kuhn~Tacker conditions that the
partial derivatives of the target function exist, an attempt has been made [ 3]
to apply these conditions to nodal points corresponding to absent solution

phases. To discuss this result we follow Karpov in introducing the following

symbol :
Wy == pt} + RT In Xij— 2 aiU;, | (1)
‘ .

where a;; are the stoichiometric coefficients for component 7 of the solution
and u; are the chemical potentials of the independent components (Lagrange mul-
tipliers). According to the Kuhn-Tacker theory, the condition wj==0 is obeyed
for all variables at the optimum point if the value of each such variable is
positive, while w20 if the variable is zero. O0Of course, the molar fractions
2 5 of the components of the solution have perfectly definite wvalues if the
solution exists, and (1) is meaningful. In that case the equation w;y =0 can
be used and actually are used in certain algorithms for calculating equilibria
in systems involving solutions. If on the other hand the solution is absent,
the equilibrium conditions wj;;O not only can be checked (because the xs are
not defined) but also in general have no meaning, because the necessary partial
derivatives do not exist. If we transform the condition ws;=0 to the form

exp| (— b+ D au )IRT| — %<0

and sum the resulting inequalities over all components of the solution follow-
ing Karpov, who ignored the irregularity of these transformations, we. obtained

the condition
fa=§lexp[(~———»?+2 auu:)/RT]——l-..-a’_O. (2)
i { |

which is used in the selector program as an equilibrium criterion.
The derivation of the criterion still contains an obvious error: the

Kuhn-Tacker theorem requires obedience to the condition w; 20 for each varia-
ble, which is not guaranteed at all by the conditions fq=0, since a
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nonpositive value for the sum does not demonstrate that each term separately
is nonpositive, It is shown below that nevertheless in one particular case
the criterion f,=<{0 can be used. |

EQUILIBRIUM CRITERION FOR A CHEMICAL SYSTEM

Instead of the free energy ¢ let us consider for convenience the reduced
energy g = G/RT, since these have their minima simultaneously (for given P and
7), and for brev1ty we will simply call this the energy. The standard energy

of component j is denoted by gg

At some step in the minimization of g we will find an association of
phases in equilibrium. We have to determine whether this association is

stable.

Let us divide the vector n for the molar amounts of the components into
two subvectors n; and n,. The components of the phases appearing in the ini-
tial association are represented by n,: the cqrresponding phases are called
present. The phases whose molar amounts at a given step are zero are called
absent; their components are represented by #,.

A decision on the stability of the initial association is taken as fol-
lows. The initial association is stable if there is no reduction in g on the
formation of any combination of phases of constant oxr variable composition
whose components appear in n,. Conversely, the assoclation is unstable if
there is a combination of phases (from components with n,) that reduces the
energy.

The newly formed phases can arise only from the components in the present
phases, so ‘they cannot occur in arbitrary dquantitative relationships, and the
resulting solutions cannot have arbitrary compositions, i.e., some definite
constraints are imposed in general on the comp051tlons and amounts of the

phases formed,

The independent components (stoichiometric units) used to express the com-~
positions of the components may be selected arbitrarily to a considerable ex-
tent. For example, the composition of a mineral may be examined in terms of
chemical elements, oxides, other minerals, or solution components. To derive
an equilibrium criterion it is necessary to change to a new system of indepen-
dent components by using as, stoichiometric units those components from n; that

can be used to express the compositions of all the other components in n,. Let
the number of these basic components be r, and the number of independent mass-
balance equations for the system be m (r=im). After changing to the new inde-

pendent components, the forms of the mass—balance eguations are naturally
altered, although the transformed system remains equivalent to the previous
one, since the transformations involve only multiplying equations by numbers
and adding equations. Let us consider the resulting transformed mass-balance
equations. Because of the above choice of independent components, all compo-
nents of the phase in n, will be present in the first r equations and will not
appear in the others. Therefore, the transformed system of material-balance
equations can be divided into two subsystems: |

Hn=nb,

where matrix H; contains the stomchlometrlc coefficients for the components of
the present and absent phases and

H2n2=0, . (3)
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which contains only components of the absent phases (» -m equations). The
right sides of the equations of (3) are zero, since the initial system satis-
fies all the mass-balance equations, including (3), while all the #n,; =0 for
the current composition of the system. If new phases arise in the system, the
composition (the vectors n,; and n,) can alter only in such a way that the mass-
balance conditions remain met.

If infinitely small amounts of new phases are formed in a system, we can
neglect the changes in the molar amounts and chemical potentials of the compo-
nents of the present phases; this 1s equivalent to the phases arising in a sys-
tem open with respect to the independent components of the present phases with
constant chemical potentials u,. It follows from (4] that the change to an
open system can be performed by replacing the mass-balance equations by (3},
and the thermodynamic potentlal of the system will be the Korzhinskiy poten-
tial g which is defined by Vg =Vg -~ H{ur. One of the properties of the
Korzhlnskly potential is that it is zero for all completely mobile components.
In this system, new phases are_ formed from components of zero energy, and
therefore the overall energy gK 1s numerically egqual to the energy effect from
their formation. Then the condition for the stability of the initial associa-
+ion can be formulated as follows: a phase association is stable 1f gK(nz)?}O
for any vector n, that satisfies (3), i.e., the formation of any new phases or
phase combinations cannot reduce the system energy.

The formation of phases in open system is related to the fact that once
phases have arisen they can increase indefinitely. In fact, if n, satisfies
system (3}, which should be obeyed for the phases formed, then the vector N,
where a 1s any positive number, should also satisfy this system. On the other
hand, proportional change in the composition vector n, will cause a proportion-
al change in the system energy:

R (an,) = ag K (n,),

i.e., the sign of gK will be the same at all points on a straight line arising
from the origin (i.e., from the point #n, =0)., It is therefore sufficient to
consider only one point on the straight line in each direction, which can be
attained by introducing the additional constraint

2’12;‘:1. (4)

This condition makes the region of possible values of 5, bounded, which enables
one to formulate a constructive equilibrium criterion.

The criterion amounts to solution of the following problem in complex pro-
gramming: fine min g¥(n,) subject to the constraints of (3) and (4) and n,;=0.
Let n% be the solution to this problem, and then the initial phase association
Wlll be stable for gK(nz):}O and unstable for g&(n *){O In the latter case,
the phases for which n2L>O should be incliuded in the initial system and the min-
imization of g should be continued.

The criterion for minimality in g includes the problem of minimizing gt
for which purpose one can use the minimality criterion again and so on. How-
ever, this process is finite, since the dimensions of the problem are reduced
at each stage. It is therefore desirable to formulate this as a recursive pro-
cedure in writing a universal machine program for eqguilibrium calculation. The
recurslion halts when either there are no solutions amongst the absent phases or
the constraints in the last problem consist of (4) alone. In the first case,
the Kuhn-Tacker conditions are applicable, while we will examine the second in
more detail.
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The minimization of gK with the single constraint of (4) may be inter-
preted as equilibrium calculation for an open system containing a single inert
component. According to the phase rule for open systems 5], only one phase
will be stable, which provides the minimum gX. Therefore, the equilibrium com-
position of this system can be determined by considering each phase in sequence,
The equilibrium value of gK for the system will be at least of the phases
thereby considered. The energy of phase 7 of constant composition is numer-
ically equal to the standard energy gK-—g , since from (4) we have n;=1. It
is necessary to calculate the minimum p0551ble energy for each phase of varia-
ble composition, This quantity can be found directly for an ideal solution.
Let us write the Lagrange function for this problem:

DO = gk 4+ A (2 nj— 1) == ;n;(g?0+lnxi)+h($+nf~_ l) :
i _

To determine the optimum point let us solve the system

OD/oh = Zn; — 1 = 0
{ / g ’ (5)

ODon; = gi o+ Inx; 4 A = 0.

We transform equations (5) to
~ KO
xp=exp(—gi )exp(—A). (6)

Summing these equations and substituting the resulting expression for exp(-21)
into (6), we get the equilibrium concentrations of the solution components:

ny= x;= exp (—gi 0)"5‘ exp (— E:KO)- | (7}

If we have the concentrations of all components, we readily obtaln an expres-
sion for the energy of the ideal solution:

g1 = — InZexp (— gf°). (8)

This formula enables one to find the minimum energy of the ideal solution
directly. If on the other hand the solution is not ideal, and the activity
coefficients of the components are not given in advance, one can use an itera-
tive procedure for minimizing the energy of this phase. In that case the com-
ponent concentrations of (7) can be used as initial approximations. Note that
(8) is applicable also to phases of constant composition if we formally consid-

er such phases as one—-component solutions: the substitution of the standard
energy of the component into (8) gives ng gKO
1

On considering (2) and (8) we see that fa=:exp(“g§d)==l, i.e., the condi-
‘tion f=<<0 is equivalent to gEdQEO; this makes clear the physical meaning of
foy: it is determined by the minimum possible energy of an ideal solution on
which no constraints are imposed., Therefore, fy cannot be used when real solu-
tions may be formed. Further, even if all possible solutions are ideal, the
fy, criterion is not applicable if the initial phase association does not in-
clude all independent components (case r<m). Therefore, let the initial asso-
ciation consist only of phases of constant composition, and it is required to
determine whether the formation of an ideal agueous solution reduces the energy.
In that case, constraints must be imposed on the composition of the solution
(these are not incorporated by the criterion f,=0); the number of these con-
straints is dependent on the number of phases from which the solution is foxrmed,
but in any case these will include the equation for electrical neutrality,
since charge is not an independent component in the initial phase association.
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CONCLUSIONS

The calculation of equilibrium compositions for chemical systems has a
specific feature that hinders the use of normal numerical methods of function
minimization. The feature is that phases of variable composition may be
formed, and traditional prediction methods are unsuitable for these.

Here a criterion 1is proposed that enables one to overcome this difficulty
by reducing the calculation on the equilibrium in the system to that on equi-
librium in the system to that on equilibrium in a simpler subsystem. The cri-
terion is general in character, since it is applicable to systems of any com-
plexity. The criterion is general because this derivation is not based on any
specific properties of any class of solutions, and therefore the criterion is
equally correct for ideal gas mixtures and for real solutions with restricted
solubility and so on,

The criterion enables one to find the phase composition of the system at
the equilibrium point, but it does not presuppose any definite method of find-
ing the equilibrium amounts of the components of the given phases, thus leav-
ing it possible to select algorithms that are the most effective for a
particular class of system.
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