Термодинамические свойства газов

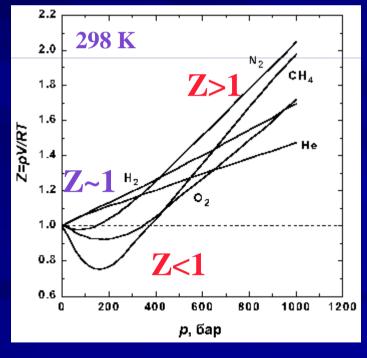
Идеальный газ — газ, свойства которого уравнением Менделеева-Клапейрона

$$pV = nRT$$

V, p, T — параметры состояния газа. Уравнение, связывающее их — уравнение состояния. Уравнение Менделеева-Клапейрона не учитывает собственный объем молекул газа и межмолекулярное взаимодействие. В идеальном газе столкновения молекул между собой и со стенками сосуда абсолютно упругие.

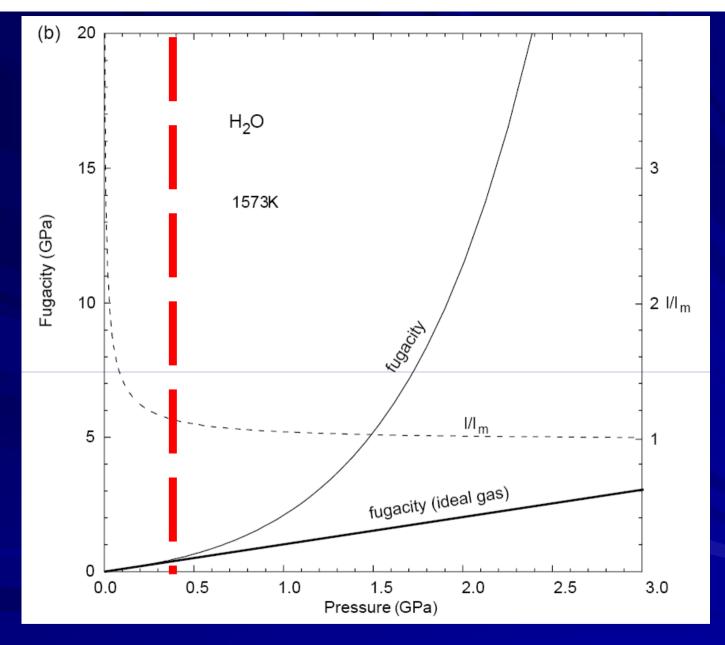
Реальные газы при высоких давлениях занимают больший объем, чем занимал бы идеальный газ в аналогичных условиях. Реальные газы описываются уравнением состояния идеального газа только приближенно, и отклонения от идеального поведения становятся заметными при высоких давлениях и низких температурах, особенно когда газ близок к конденсации. Наглядная характеристика отклонения реальных газов от идеального поведения оказывается мольный объем газа $V_{\rm m} = V/n$

V идеального газа при 101325 Па и 273 К = RT/p = 22.41 л/моль (закон Авогадро)

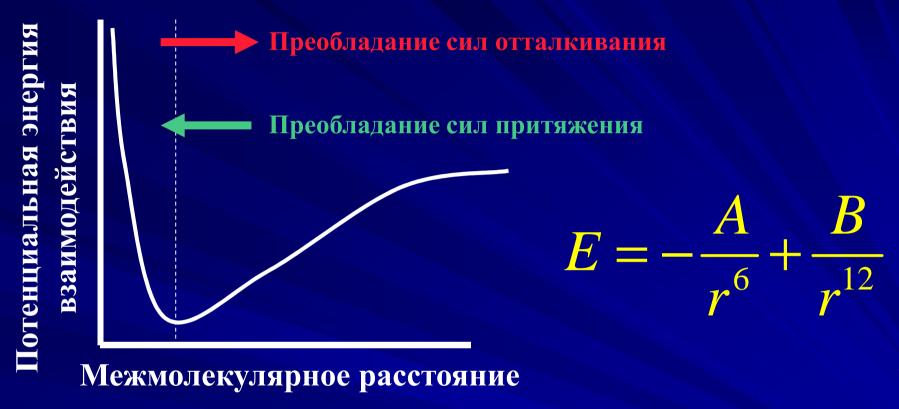

Газ	$V_{ m m}$, л/моль	Газ	${f V}_{f m}$, л/моль
$\mathbf{H_2}$	22,43	CO_2	22,26
He	22,43	N ₂ O	22,25
Ne	22,42	H_2O	22,14
$\mathbf{F_2}$	22,42	NH ₃	22,08
N_2	22,40	Cl ₂	22,02
CO	22,40	SO ₂	21,89
O_2	22,39	C_4H_{10}	21,50
CH_4	22,36	O_3	21,60

Отклонение газа от идеальности выражают в виде следующего соотношения

$$Z = \frac{pV}{RT}$$

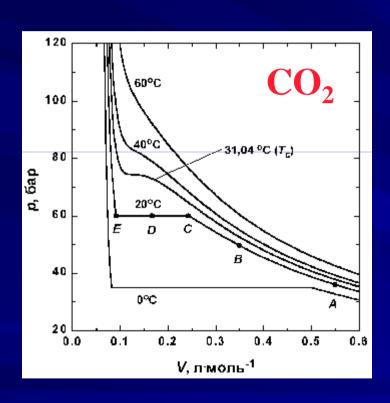

которое называется фактором сжимаемости. Для идеального газа Z=1, для реальных газов Z может составлять 5-6. Наибольшие отклонения от идеальности наблюдаются у СО,

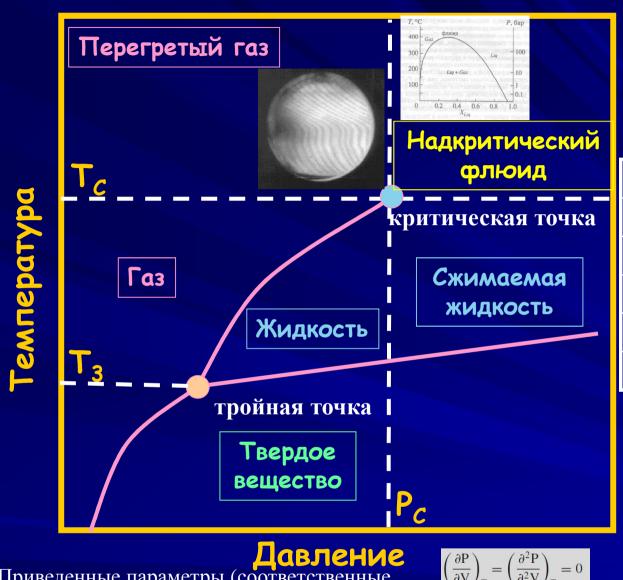
 CO_2 , N_2 , CH_4 .


Силы притяжения и отталкивания

Собственный объем молекул

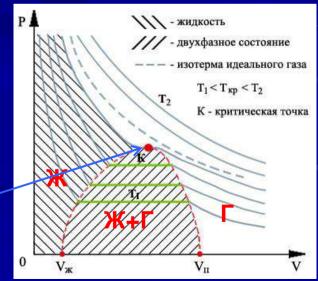
Неидеальное поведение газа появляется тогда, когда расстояние между молекулами (I) становится сравнимо с их размерами (I_m)


Потенциал Леннарда-Джонса


При высоких давлениях для всех газов Z>1, поскольку в этой области преобладают силы межмолекулярного отталкивания. При более низких давлениях для некоторых газов Z<1, что объясняется преобладанием межмолекулярного притяжения. При $p\to 0$ эффект межмолекулярного притяжения исчезает, и для всех газов $Z\to 1$, т.е. в этих условиях все газы ведут себя *почти* идеально.

Критические явления и понятие флюида

В глубинах Земли газы обладают особыми свойствами, отличными от свойств идеального газа или жидкости. Такое состояние называют флюид.



При температуре выше $T_{\rm C}$ газ невозможно обратить в жидкость никаким сжатием. Температура, давление и мольный объем в критической точке называются критической температурой $(T_{\rm c})$, критическим давлением $(p_{\rm c})$ и критическим мольным объемом $(V_{\rm c})$ вещества.

Флюид может диффундировать через твердые вещества как газ и растворять вещества как жидкость.

Компонент	T_c , K	P_c , бар
H ₂ O	647.1	220.56
CO ₂	304.2	72.8
H_2	33.1	13.0
O_2	155.0	50.5
CH ₄	190.7	46.4

Приведенные параметры (соответственные состояния)

$$T_r = \frac{T}{T_c}$$
 $P_r = \frac{P}{P_c}$ $V_r = \frac{V}{V_c}$

$$\left(\frac{\partial P}{\partial V}\right)_{T} = \left(\frac{\partial^{2} P}{\partial^{2} V}\right)_{T} = 0$$

$$\left(\frac{\partial^{3} P}{\partial V^{3}}\right)_{T} < 0$$

$$\left(\frac{\partial T}{\partial V}\right)_{P} = 0$$

Для расчета молярной свободной энергии Гиббса (или химического потенциала) чистой фазы i при давлении P отличном от стандартного (P_0) , т.е. $G_i(T, P)$, мы использовали формулу

$$G_i(T, P) = G_i(T, P_0) + \int_{P_0}^{P} V_i dp$$

где V_i — мольный объем компонента, который является функцией давления и температуры.

Если фаза i — реальный газ, то V_i является сложной функцией давления и температуры (уравнения состояния газов), и интегрирование этих функций довольно сложно. Однако для многих газов составлены справочные таблицы, данные в которых получены из измерений соотношений T-P-V.

Обычно эти данные включают фугитивность (f_i) или коэффициент фугитивности (Γ_i) . Фугитивность представляет собой эффективное давление, которое заменяет реальное давление в термодинамических уравнениях. Фугитивность чистого газа i при давлении P определяется соотношением

$$RT \ln f_i = RT \ln P + \int_{P_0}^{P} (V_i - V_0) dP$$

где V_i — мольный объем чистого газа, а V_0 — мольный объем идеального газа при тех же условиях (RT/P).

Если газ идеальный, то $f_{\rm i}={
m p.}$ Если $V_{\rm i}$ отличается от объема идеального газа, то необходимо ввести коэффициент фугитивности

$$f_i = P\Gamma_i$$

Получим

$$RT \ln \Gamma_i = \int_{p_0}^{p} (V_i - V_0) dP$$

$$RT \ln \frac{f_i}{f_0} = RT \ln \frac{P\Gamma_i}{P_0\Gamma_0} = \int_{p_0}^{p} V_i dP$$

При низких давлениях межмолекулярные силы малы вследствие больших межмолекулярных расстояний. Таким образом, при низких давлениях свойства реального газа приближается к свойствам идеального газа. Для давления $p_0 = 1$ бар можно принять $\Gamma_i^0 = 1$. Тогда

$$RT \ln f_i = RT \ln P\Gamma_i = \int_{p_0}^{P} V_i dP$$

Таким образом, уравнение для свободной энергии Гиббса для реального газа *i* можно переписать следующим образом

$$G_{i} = H_{0} - TS_{0} + \int_{T_{0}}^{T} C_{p} dT - T \int_{T_{0}}^{T} \frac{C_{p}}{T} dT + RT \ln P\Gamma_{i}$$

Значения коэффициентов фугитивности меняются в широких пределах. Намечается следующий ряд коэффициентов фугитивности для газов (T = 1000 - 1200 K)

$$H_2O < H_2 < NH_3 < O_2 < H_2S < CO_2 \approx CO \approx N_2 < CH_4$$

Между крайними членами ряда отношение коэффициентов фугитивности достигает 2-3 порядков. Например при 15 кбар и 1200 K

$$\Gamma_{\rm H2O} = 3.101$$
, a $\Gamma_{\rm CH4} = 67.37$

Величины. $\Gamma_{\rm H_2O}$ (по Хельгесону и Киркхаму [58]).

	6	87 0.1	Idi Ti				100						1,429
	8	0,066	0,125	0,205	0,303	0,414	0,533	0,654	0,775	068°0	766.0	1,095	1,263
	25	0,050	260°0	0,163	0,246	0,343	0,447	0,556	0,665	0,771	0,870	0,962	1,122
	9	0,038	770,0	0,132	0,203	0,287	0,380	0,478	0,577	0,675	797,0	0,853	1,004
·	5	0,030	0,062	0,109	0,171	0,245	0,329	0,418	0,510	009°0	0,686	0,767	0,910
draw 6	4	0,024	0,051	0,092	0,148	0,216	0,293	0,376	0,461	0,546	0,628	0,704	0,839
	3	0,020	0,045	0,083	0,135	0,199	0,273	0,353	0,435	0,517	0,595	899,0	0,795
e Ti	2	0,019	0,043	0,082	0,135	0,202	0,278	0,361	0,445	0,527	0,603	0,673	0,789
10	espois Tag Est	0,0236	0,0546	0,1050	0,1752	0,2622	0,3594	0,4589	0,5528	0,6358	0,7057	0,7633	0,8487
3c	0,5	0,0366	0,0859	0,1659	0,2763	0,4083	0,5416	0,6481	0,7259	0,7848	0,8297	0,8646	0,9137
	T°, C	200	250	300	350	400	450	200	550	009	650	200	800

Стандартное состояние - идеальный газ при 1 бар.

Величины Г_{СО2} (по Мельнику [86]).

	1500	1,20 1,37 1,53 1,71 2,04 2,63 3,39 4,27 5,50 7,08 9,33
	1400	1,20 1,37 1,55 1,76 2,09 2,75 3,63 4,68 6,17 7,94
2000 24 1 Au	1300	1,20 1,37 1,57 1,78 2,95 3,89 5,13 6,92 9,12 12,3
	1200	1,20 1,37 1,59 1,82 2,29 3,16 4,27 7,94 10,7 14,8
	1100	1,20 1,38 1,59 1,86 2,34 3,31 4,57 6,31 8,91 12,6 17,8
	1000	1,19 1,38 1,62 1,91 2,46 3,55 5,01 7,24 10,5 15,1 22,4 31,6
T, K	006	1,17 1,37 1,62 1,95 2,08 3,89 5,75 8,32 12,6 18,6 28,8
12.10	800	1,15 1,42 1,62 2,00 2,95 4,67 6,92 10,5 16,2 24,6 38,0
	700	1,11 1,28 1,56 1,95 3,15 5,18 8,52 13,9 22,4 35,7 56,3
	009	1,02 1,16 1,44 1,85 3,18 5,60 9,88 17,4 30,2 51,8 88,1
orq a e e i	500	0,85 0,95 1,20 1,60 3,00 5,60 11,3 22,1 42,7 81,4
	400	0,57 0,63 0,82 1,16 2,46 5,49 12,5 28,4 64,2 143 319
	P, aTM	500 1 000 1 500 2 000 3 000 4 000 5 000 7 000 8 000 10 000

Давления даны в атмосферах. Выведено по уравнениям (А.З) и (А.4). При использовании данных Роби и Вальдбаума Г со 2

Уравнения состояния реальных газов

Уравнение состояния вещества (УС) — это аналитическая формулировка соотношений между объемом, температурой и давлением.

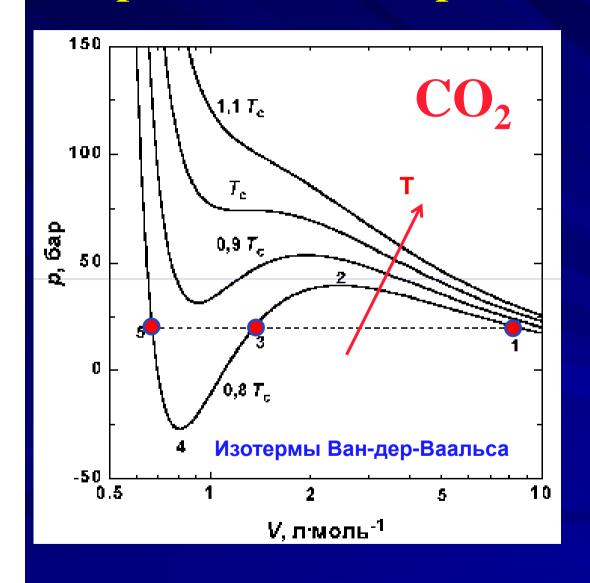
$$f(P,V,T) = 0$$

Наиболее простым УС является уравнение состояния идеального газа (уравнение Менделеева-Клапейрона), непригодное для описания свойств реальных газов при повышенных давлениях. Уже при небольших давлениях сказывается влияние межмолекулярных сил отталкивания и притяжения.

Одним из наиболее ранних является уравнение Ван-дер-Ваальса (1873)

$$(P + \frac{a}{V^2})(V - b) = RT$$

Йоханнес Ван-дер-Ваальс


Константа *а* в этих уравнениях отражает межмолекулярное взаимодействие, главным образом способность к взаимному притяжению молекул данного газа. Притяжение молекул приводит к возникновению дополнительного давления на газ, которое называется внутренним давлением. Его величина пропорциональная квадрату молярного объема газа.

Константа *b* характеризует собственный объем молекул и взаимное отталкивание на близких расстояниях. Значения констант *a* и *b* не зависят от температуры, а зависят только от природы газа.

Константы для уравнения Ван-дер-Ваальса известны для большинства газов. Однако уже выше 500 бар расчетные значения объема отличаются от экспериментальных.

Газ	<i>a</i> , л ² бар/моль ²	<i>b</i> , см ³ /моль
CO_2	3.640	42.67
H_2O	5.536	30.49
CH ₄	2.283	42.78
\mathbf{H}_2	0.2476	26.61

$pV^{3} - (RT + pb)V^{2} + aV - ab = 0$

$$V_C = 3b$$

$$p_C = \frac{a}{27b^2}$$

$$T_C = \frac{8a}{27Rb}$$

$$\ln f = \ln \frac{RT}{V - b} + \frac{b}{V - b} - \frac{2a}{RTV}$$

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

- 1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей;
- 2) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления.

Известны другие уравнения с двумя константами *а* и *b*, например уравнение Редлиха-Квонга

$$(P + \frac{a}{T^{0.5}V(V+b)})(V-b) = RT$$

$$\ln f = \frac{b}{V - b} - \frac{a}{RT^{1.5}(V + b)} + \ln \frac{RT}{V - b} + \frac{a}{bRT^{1.5}} \ln \frac{V}{V + b}$$

Вириальные уравнения

$$Z = \frac{PV}{RT} = 1 + B\rho + C\rho^{2} + D\rho^{3} + \dots$$

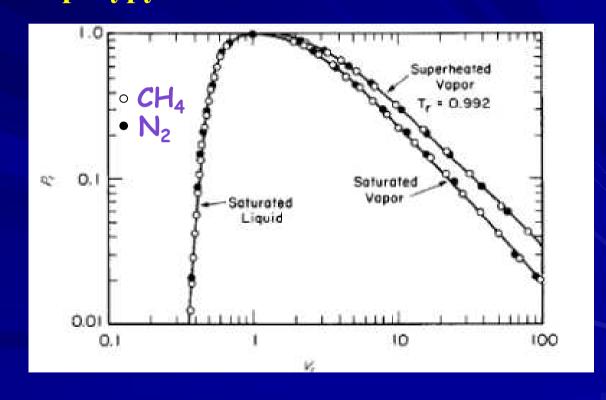
где ρ - плотность, B, C, D — вириальные коэффициенты, зависящие от температуры и природы рассматриваемого газа. B учитывает взаимодействие между двумя молекулами, C — между тремя и т.д.

$$Z = \frac{PV}{RT} = A + BP_r + CP_r^2 + DP_r^3 + \dots$$

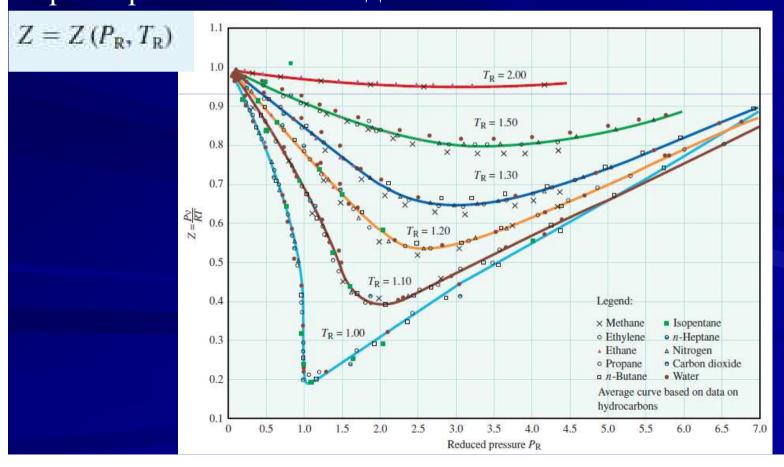
Полиномиальные уравнения (Holland & Powell, 1990)

$$RT \ln f = (A + BT + CT^2)$$

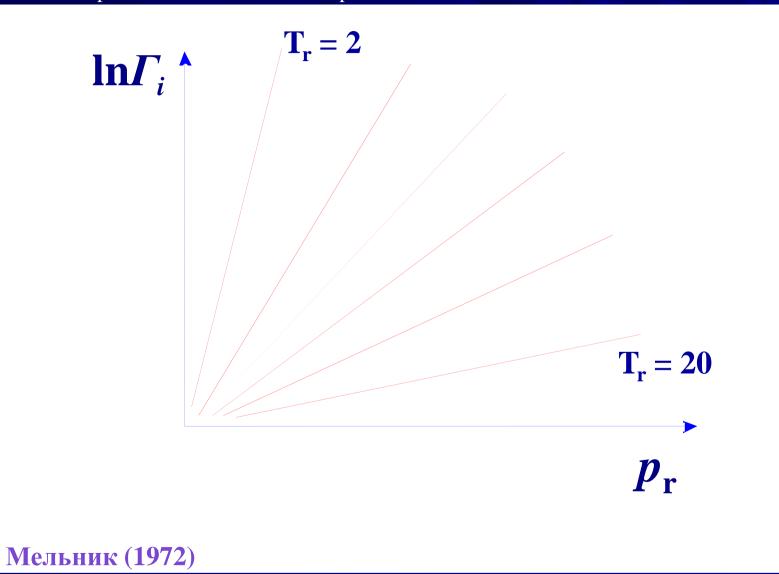
где А, В, С – функции давления.


Закон соответственных состояний (ЗСС)

Поскольку критические константы являются характеристическими свойствами газов, их можно использовать для создания соответствующей относительной шкалы, введя безразмерные приведенные переменные: приведенное давление, приведенный объем и приведенную температуру.

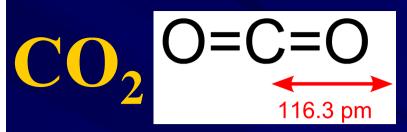

$$V_r = \frac{V_m}{V_C}$$

$$p_r = \frac{p}{p_C}$$

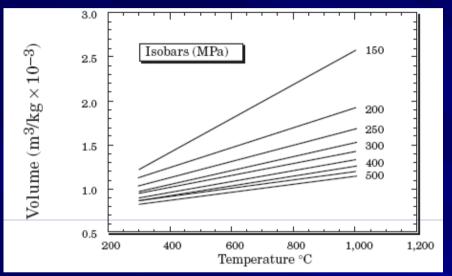

$$T_r = \frac{T}{r}$$

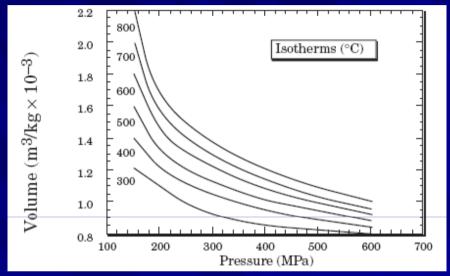
Соответственными называются состояния разных веществ, имеющие одинаковые значения приведенных переменных. Согласно закону соответственных состояний, если для рассматриваемых веществ значения двух приведенных переменных одинаковы, должны совпадать и значения третьей приведенной переменной. Иначе говоря, при одинаковых приведенных параметрах все газы обладают близкими свойствами.

Согласно закону соответственных состояний, коэффициент фугитивности является универсальной функцией приведенных давления $p_{\rm r}$ и температуры $T_{\rm r}$.


О точности закона можно судить по значению критического коэффициента

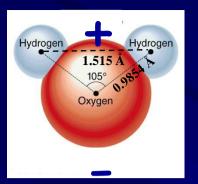
 $Z_C = \frac{p_C V_C}{RT_C}$


Если бы закон соответственных состояний выполнялся абсолютно точно, то этот коэффициент был бы одинаков для всех веществ. Однако это не совсем так.


Вещество	$p_c V_c$ / RT_c	Вещество	$p_c V_c / RT_c$
He	0,300	CO_2	0,287
\mathbf{H}_2	0,304	N_2	0,292
Ne	0,296	$\mathbf{O_2}$	0,292
Ar	0,291	$\mathrm{CH_4}$	0,300

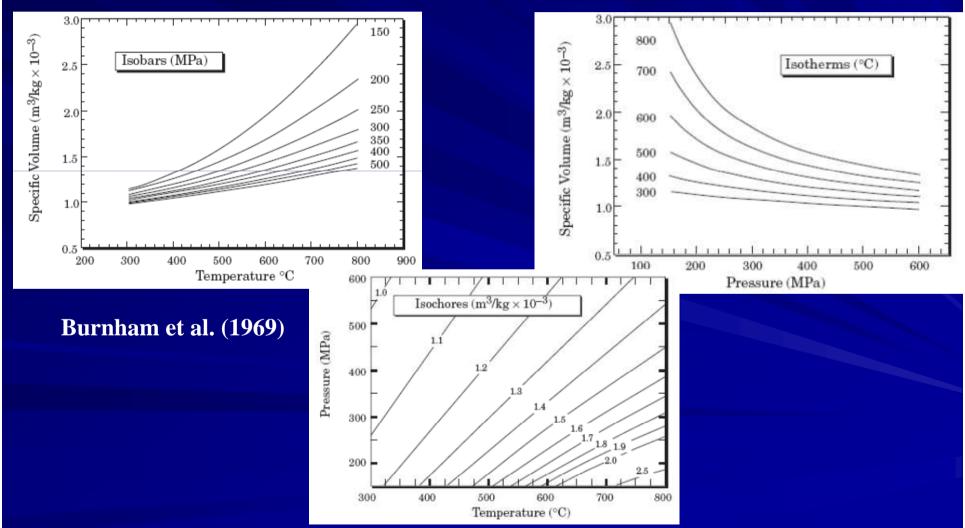
ЗСС не может рассматриваться как всеобщий. Он служит как основа для классификации веществ по термодинамическим свойствам и может использоваться для прогнозирования свойств неизученных веществ.

линейная молекула O=C=O отсутствует дипольный момент Критическая точка: 31.1°C, 7.36 МПа

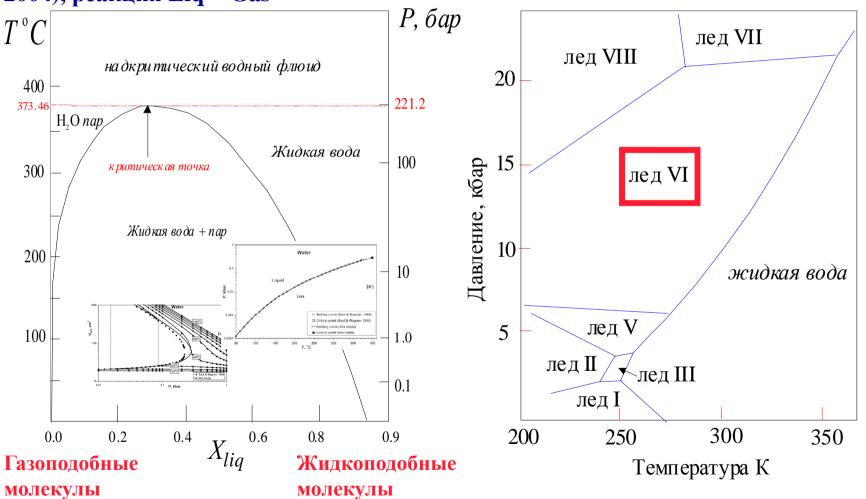

Шмонов, Шмулович (1975)

$$V_{CO_2} = 17.771 - 25.288561g(P - 1233) + 0.1479286T +$$

$$+27.40306 \lg(P-1447) - 0.0354434T \lg(P-1447) \frac{cM^3}{MOЛb}$$


Перчук, Карпов (1975)

 H_2O


нелинейная молекула H=O=H (105°C) значительный дипольный момент (способствует растворению ионных соединений)

Критическая точка: 374.1°С, 22 МПа

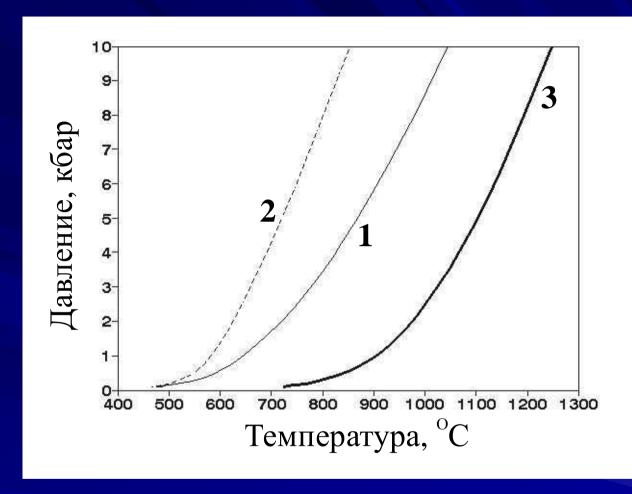


Диаграмма состояния Н2О

Принцип: Процесс ассоциации молекул во флюидах (Gerya et al., 2004), реакция Liq = Gas

Расчет линии реакции с участием газовой фазы

- 1. $CaCO_3 + SiO_2 = CaSiO_3 + CO_2$
- 2. $KAl_3Si_3O_{10}(OH)_2 = KAlSi_3O_8 + Al_2O_3 + H_2O$
- 3. $2Mg_7Si_8O_{22}(OH)_2 = 7MgSiO_3 + 9SiO_2 + 2H_2O$

Рассмотрим реакцию (1). Условие равновесия этой реакции запишется следующим образом:

$$\begin{split} \Delta G &= \Delta H_0 - T \Delta S_0 + \int\limits_{T_0}^T \Delta C_p dT - T \int\limits_{T_0}^T \frac{\Delta C_p}{T} dT + \int\limits_{p_0}^p \Delta V dP = 0 \end{split}$$
 где
$$\Delta H_0 = \Delta_f H^0_{Wol} + \Delta_f H^0_{CO_2} - \Delta_f H^0_{Cal} - \Delta_f H^0_{Qtz}$$

$$\Delta S_0 = S^0_{Wol} + S^0_{CO_2} - S^0_{Cal} - S^0_{Qtz}$$

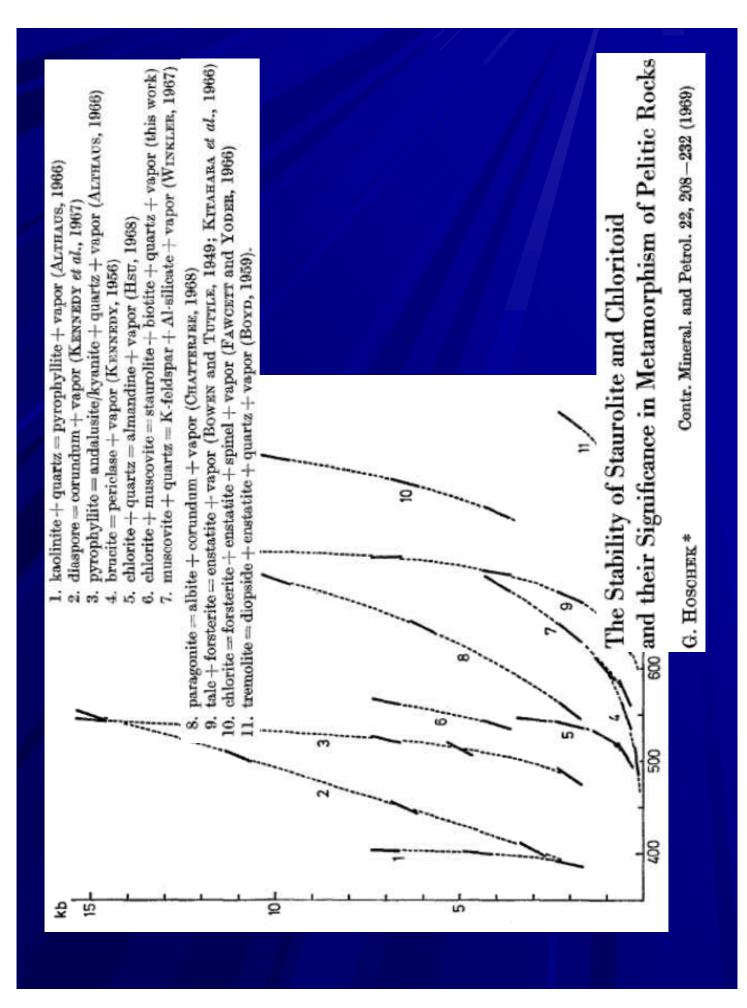
$$\Delta C_P = C_{P_{Wol}} + C_{P_{CO_2}} - C_{P_{Cal}} - C_{P_{Qtz}}$$

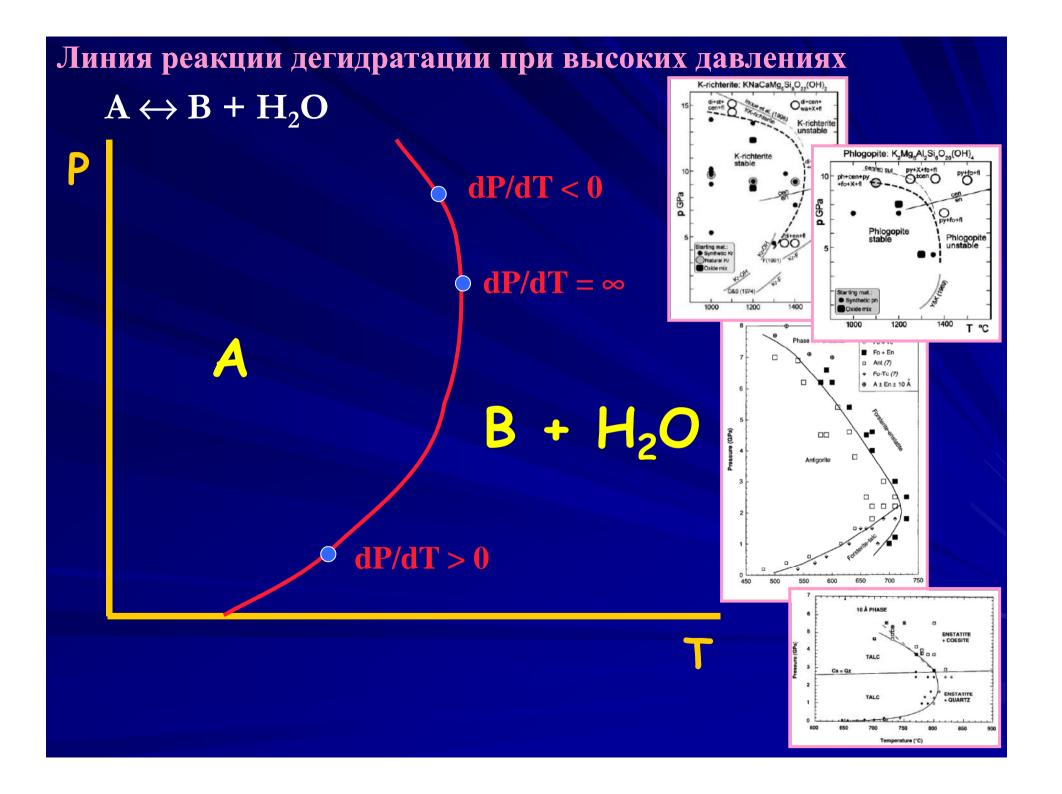
Интеграл по объему можно разбить на две составляющие

$$\int_{p_0}^{p} \Delta V dP = \int_{p_0}^{p} \Delta V_S dp + \int_{p_0}^{p} V_{CO_2} dP = \int_{p_0}^{p} \Delta V_S dP + RT \ln f_{CO_2} = \int_{p_0}^{p} \Delta V_S dP + RT \ln P\Gamma_{CO_2}$$

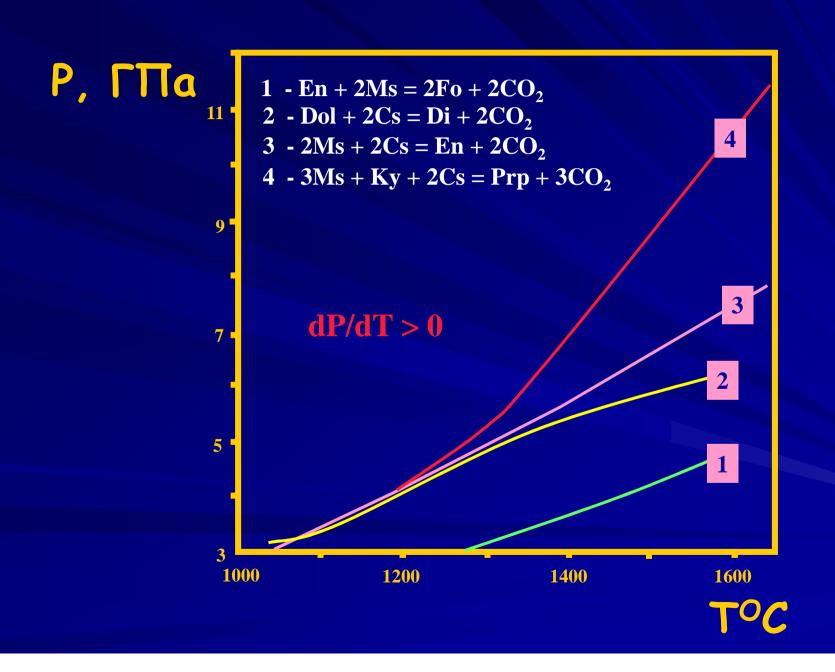
где
$$\Delta V_S = V^0_{Wol} - V^0_{Cal} - V^0_{Qtz}$$

а $f_{\rm CO2}$ и $\Gamma_{\rm CO2}$ — фугитивность и коэффициент фугитивности газа при заданных T и P.

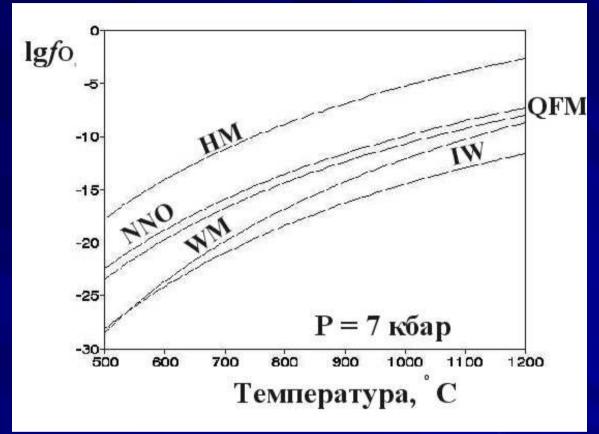

Задания


Рассчитайте температуру разложения магнезита (MgCO₃) на периклаз (MgO) и CO₂ при давлении 5 кбар, если (1) углекислый газ — идеальный газ; (2) если коэффициент фугитивности углекислого газа при 5 кбар $\Gamma_{5000} = 5.5$ ($f_1 = 1$). В расчетах принять, что ΔH , ΔS возможной реакции не зависят от температуры, а ΔV_S не зависит от давления.

Фаза	$\Delta_f H$,	S_{298}	$V_{298, 1}$
	кДж/моль	Дж/моль/К	Дж/моль/бар
Магнезит	-1111.59	65.1	2.803
CO ₂	-393.51	213.7	0
Периклаз	-601.65	26.9	1.125


Рассчитайте температуру, при которой стабильна ассоциация гроссуляра $Ca_3Al_2Si_3O_{12}$, анортита $CaAl_2Si_2O_8$, кальцита $CaCO_3$ и кварца SiO_2 при 7 кбар в углекислом флюиде, если коэффициент фугитивности CO_2 при 7 кбар $\Gamma_{7000} = 12.0 \ (f_1 = 1)$. В расчетах принять, что ΔH , ΔS возможной реакции не зависят от T, а ΔV_S не зависит от P.

Фаза	∆ _f H, кДж/моль	S ₂₉₈ , Дж/моль/К	V _{298, 1} , Дж/моль/бар
Кальцит	-1207.54	92.5	3.689
Кварц	-910.88	41.5	2.269
Гроссуляр	-6644.07	255.0	12.535
CO ₂	-393.51	213.7	0
Анортит	-4233.48	200.0	10.079



Линия реакций декарбонатизации при высоких давлениях

Кислородные буферы

НМ (гематит-магнетит)

NNO (Ni-NiO) **QFM** (кварц-фаялит-магнетит)

WM (вюстит-магнетит)

IW (железо-вюстит)

 $2Fe_3O_4+1/2O_2=3Fe_2O_3$

 $Ni+1/2O_2 = NiO$

 $3Fe_2SiO_4+O_2 = 2Fe_3O_4+3SiO_2$

 $3FeO+1/2O_2 = Fe_3O_4$

 $Fe+1/2O_2 = FeO$

Рассмотрим метод расчета f_{O2} в реакциях окисления металлов (*Me*).

$$nMe_{a+1}O_{m+a} + \frac{m(a+1) - n(m+a)}{2}O_2 = (a+1)Me_nO_m$$

В качестве примера произведем расчет реакции окисления магнетита (*Mag*) с образованием гематита (*Hem*) (буфер HM)

$$2Fe_3O_4 + 1/2O_2 = 3Fe_2O_3$$

при $P_S = 1$ бар и T = 800 К с использованием базы термодинамических данных (Holland, Powel, 1998):

$$\Delta V_{\rm S}^{~0} = 3V_{Hem}^{~0} - 2V_{Mag}^{~0} = -4.026$$
 кал/бар
$$\Delta G_{800}^{~0} = 3G_{Hem}^{~0} - 2G_{Mag}^{~0} - 0.5G_{{\rm O}_2}^{~0} = -31040.364$$
 кал $1/2$ RT In $f_{{\rm O}_2} = \Delta G_{800}^{~0} + \Delta V_{\rm S} P_{\rm S}$,

откуда

$$\lg f_{O_2} = \frac{\Delta G_{800}^0 - \Delta V_{\rm S} P_{\rm S}}{0.5 \cdot 2.303 RT} = \frac{-31040 - 4.026}{0.5 \cdot 2.303 \cdot 1.987 \cdot 800} \approx -16.96$$

$$f_{O_2} = 10^{-16.96} \, \text{5ap}$$

Метаморфизм некоторой породы проходил при $T=700^{\rm O}{\rm C}, P=6$ кбар и ${\rm lg}f_{\rm O2}={\rm QFM}\text{-}2$. Возможно ли образование графита в этой породе при этих условиях, если через нее будет проходить углекислый флюид. $\Gamma_{\rm CO2}=8.341$ при $700^{\rm O}{\rm C}$ и 6 кбар $(f_1=1)$. В расчетах принять, что ΔH , ΔS возможной реакции не зависят от T, а $\Delta V_{\rm S}$ не зависит от p.

Фаза	$\Delta_f H$,	S ₂₉₈ ,	V _{298, 1} ,
	ккал/моль	кал/моль/К	кал/моль/бар
Фаялит	-353.33	36.09	1.107
Кварц	-217.72	9.92	0.54
Магнетит	-266.64	34.92	1.06
Графит	0	1.39	0.13
CO ₂	-94.06	51.08	0
O_2	0	49.05	0